Fault Tolerant Supervision of an Industrial Gas Turbine

نویسندگان

  • Emil Larsson
  • Jan Åslund
  • Erik Frisk
  • Lars Eriksson
چکیده

Supervision of the performance of an industrial gas turbine is important since it gives valuable information of the process health and makes efficient determination of compressor wash intervals possible. Slowly varying sensor faults can easily be misinterpreted as performance degradations and result in an unnecessary compressor wash. Here, a diagnostic algorithm is carefully combined with non-linear state observers to achieve fault tolerant performance estimation. The proposed approach is evaluated in an experimental case study with six months of measurement data from a gas turbine site. The investigation shows that faults in all gas path instrumentation sensors are detectable and isolable. A key result of the case study is the ability to detect and isolate a slowly varying sensor fault in the discharge temperature sensor after the compressor. The fault is detected and isolated before the wash condition of the compressor is triggered, resulting in fault tolerant estimation of compressor health parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault Isolation for an Industrial Gas Turbine with a Model-based Diagnosis Approach

Model based diagnosis and supervision of industrial gas turbines are studied. Monitoring of an industrial gas turbine is important as it gives valuable information for the customer about service performance and process health. The overall objective of the paper is to develop a systematic procedure for modelling and design of a model based diagnosis system, where each step in the process can be ...

متن کامل

Identification and Robust Fault Detection of Industrial Gas Turbine Prototype Using LLNF Model

In this study, detection and identification of common faults in industrial gas turbines is investigated. We propose a model-based robust fault detection(FD) method based on multiple models. For residual generation a bank of Local Linear Neuro-Fuzzy (LLNF) models is used. Moreover, in fault detection step, a passive approach based on adaptive threshold is employed. To achieve this purpose, the a...

متن کامل

Diagnosis and Supervision of Industrial Gas Turbines

Monitoring of industrial gas turbines is of vital importance, since it gives valuable information for the customer about maintenance, performance, and process health. The performance of an industrial gas turbine degrades gradually due to factors such as environment air pollution, fuel content, and ageing to mention some of the degradation factors. The compressor in the gas turbine is especially...

متن کامل

Model Based Diagnosis and Supervision of Industrial Gas Turbines

Supervision of performance in gas turbine applications is important in order to achieve: (i) reliable operations, (ii) low heat stress in components, (iii) low fuel consumption, and (iv) efficient overhaul and maintenance. To obtain good diagnosis performance it is important to have tests which are based on models with high accuracy. A main contribution of the thesis is a systematic design proc...

متن کامل

Online Fault Detection and Isolation Method Based on Belief Rule Base for Industrial Gas Turbines

Real time and accurate fault detection has attracted an increasing attention with a growing demand for higher operational efficiency and safety of industrial gas turbines as complex engineering systems. Current methods based on condition monitoring data have drawbacks in using both expert knowledge and quantitative information for detecting faults. On account of this reason, this paper proposes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013